Lớp 8Toán

Giải Bài 55 trang 98 SBT Toán 8 tập 2

Ôn tập chương 3 – Hình học

Bài 55 trang 98 sbt Toán 8 tập 2 

Tam giác ABC có ba đường cao AD, BE, CF đồng quy tại H.Chứng minh rằng:AH.DH = BH.EH = CH.FH

Bạn đang xem: Giải Bài 55 trang 98 SBT Toán 8 tập 2

Lời giải:

Hướng dẫn

Sử dụng: Nếu hai góc của tam giác này lần lượt bằng hai góc của tam giác kia thì hai tam giác đó đồng dạng.

Từ đó suy ra các hệ thức cần chứng minh.

Xét ΔAFH và ΔCDH, ta có:

∠(AFH) = ∠(CDH) = 90o

∠(AHF) = ∠(CHD) (đối đỉnh)

Suy ra: ΔAFH đồng dạng ΔCDH (g.g)

Suy ra: Giải SBT Toán 8: Ôn tập chương 3 - Hình học -

Suy ra: AH.DH = CH.FH (1)

Xét ΔAEH và ΔBDH,ta có:

∠(AEH) = ∠(BDH) = 90o

∠(AHE) = ∠(BHD) (đối đỉnh)

Suy ra: ΔAEH đồng dạng ΔBDH (g.g)

Suy ra:Giải SBT Toán 8: Ôn tập chương 3 - Hình học -

Suy ra: AH.DH = BH.EH (2)

Từ (1) và (2) suy ra: AH.DH = BH.EH = CH.FH.

Xem toàn bộ Giải SBT Toán 8: Ôn tập chương 3 – Hình học

Đăng bởi: Đại Học Đông Đô

Chuyên mục: Lớp 8, Toán 8

Trả lời

Email của bạn sẽ không được hiển thị công khai.

Back to top button