[Download] Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội – Tải về File Docx, PDF

Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội

Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội
Nội dung Text: Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội

Download


Với mục tiêu cung cấp kiến thức về mô hình hồi quy gồm 2 biến độc lập; mô hình hồi quy bội gồm k biến; phương pháp OLS cho mô hình hồi quy bộ; hệ số xác định bội và hệ số xác định bội đã hiệu chỉnh; Tailieu.vn giới thiệu đến các bạn “Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội”.

Bạn đang xem: [Download] Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội – Tải về File Docx, PDF

*Ghi chú: Có 2 link để tải tài liệu, Nếu Link này không download được, các bạn kéo xuống dưới cùng, dùng link 2 để tải tài liệu về máy nhé!
Download tài liệu Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội File Docx, PDF về máy

Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội

Mô tả tài liệu

Nội dung Text: Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội

  1. Bài 4: Mô hình hồi quy bội

    BÀI 4. MÔ HÌNH HỒI QUY BỘI

    Mục tiêu

    Sau khi kết thúc bài, học viên sẽ hiểu
    được những vấn đề sau đây:
     Mô hình hồi quy bội có 2 biến và mô
    hình tổng quát k biến.
     Ý nghĩa của các hệ số hồi quy ước lượng.
     Hệ số xác định bội và hệ số xác định
    bội đã hiệu chỉnh.
     Khoảng tin cậy và kiểm định giả thiết
    cho các hệ số hồi quy.
     Kiểm định về sự phù hợp của mô
    hình hay ảnh hưởng của tất cả các
    biến độc lập.
     Dự báo trong mô hình hồi quy bội.

    Nội dung Hướng dẫn học

     Mô hình hồi quy bội gồm 2 biến độc lập.  Đề nghị học viên ôn lại phần ước
     Mô hình hồi quy bội gồm k biến (k-1 biến lượng và kiểm định giả thiết trong môn
    độc lập). lý thuyết xác suất và thống kê toán.
     Phương pháp OLS cho mô hình hồi quy bội.  Theo dõi kỹ bài giảng.
     Hệ số xác định bội và hệ số xác định bội đã  Xem các ví dụ cho mỗi phần bài giảng.
    hiệu chỉnh.  Làm các ví dụ và trả lời câu hỏi
     Ước lượng khoảng tin cậy và kiểm định giả trắc nghiệm
    thuyết cho hệ số hồi quy.
     Kiểm định về sự phù hợp của mô hình
    hồi quy.
     Dự báo trong mô hình hồi quy bội.

    STA301_Bài 4_v1.0013101214 47

  2. Bài 4: Mô hình hồi quy bội

    TÌNH HUỐNG DẪN NHẬP

    Tình huống
    Hội đồng quản trị của công ty may Đức Giang đang muốn xem xét
    ảnh hưởng của 2 yếu tố đầu vào của sản xuất là Vốn (V, tỉ đồng) và
    Lao động (L, người) lên sản lượng (SL, triệu sản phẩm) của công ty.
    Cụ thể, họ muốn đưa ra quyết định về việc có nên tiếp tục mở rộng
    sản xuất, thu hẹp lại hay giữ nguyên như hiện tại. Để tiến hành nghiên
    cứu này, phòng kế hoạch của công ty thu thập số liệu về vốn đầu tư,
    lao động sử dụng và sản lượng sản xuất ra trong 30 tháng qua tại công ty (có n = 30 quan sát).
    Mô hình dùng để nghiên cứu có dạng
    log(SLi) = β1 + β2log(Vi) + β3log(Li)+ui
    Dùng số liệu của mẫu, ước lượng được hàm hồi quy mẫu có dạng,
     )  0.424816  0.7358log(V )  0.9489 log(L ).
    log(SL i i i

    Câu hỏi
     Vậy công ty Đức Giang nên tăng, giảm hay giữ nguyên quy mô sản xuất?
     Liệu cả 2 biến vốn và lao động cùng không có ảnh hưởng đến sản lượng có đúng không?
     Giả sử trong tháng tới, công ty quyết định sử dụng lượng vốn là 10 tỉ đồng và lao động là
    3000 thì sản lượng dự báo là bao nhiêu?

    48 STA301_Bài 4_v1.0013101214

  3. Bài 4: Mô hình hồi quy bội

    Trong bài trước chúng ta đã nghiên cứu mô hình hồi quy tuyến tính đơn giản, đó là hồi quy tuyến
    tính đơn, trong mô hình này chúng ta đã nghiên cứu các mối quan hệ giữa một biến được giải
    thích là Y và một biến giải thích X. Bài này chúng ta mở rộng nghiên cứu sang mô hình hồi quy
    tuyến tính bội với một biến được giải thích Y và (k – 1) biến giải thích X 2 ,…, X k . Trong thực tế
    mô hình hồi quy tuyến tính bội được sử dụng rộng rãi vì đối với nhiều trường hợp nó giải thích
    về hành vi của biến phụ thuộc (biến được giải thích) Y tốt hơn mô hình hồi quy tuyến tính đơn.
    Ví dụ trong bài trước chúng ta xét mối quan hệ giữa thu nhập và chi tiêu nhưng thực tế chi tiêu
    không chỉ phụ thuộc vào thu nhập mà nó còn phụ thuộc vào các yếu tố khác, chẳng hạn như:
    niềm tin vào nền kinh tế, độ tuổi, nghề nghiệp, địa lý… Vì vậy mô hình hồi quy đơn khó giải
    thích được hành vi của biến phụ thuộc Y. Do đó việc mở rộng mô hình hồi quy tuyến tính bội sẽ
    giúp chúng ta giải thích được rõ hơn về biến phụ thuộc Y.
    BÀI TOÁN
    Mô hình hồi quy tuyến tính bội là mô hình nghiên cứu mối quan hệ giữa một biến phụ
    thuộc Y và (k – 1) biến độc lập X 2 , X 3 ,…, X k có dạng:
    Yi  1  2 X 2i  3 X 3i  …  k X k  u i
    Trong đó E(u i )  0, E(u i | X 2i , X 3i ,…, X ki )  0

    Cov  u i , u j   0 i  j

    Cov(X 2i ,u i )  0;Cov(X 3i , u i )  0;…,Cov  X ki , u i   0

    Var(u i )   2 , i .

    4.1. Mô hình hồi quy với hai biến giải thích
    Định nghĩa: Mô hình hồi quy tổng thể (PRF) với hai biến giải thích có dạng như sau:
    Yi  1  2 X 2i  3 X 3i  u i (4.1)
    với Y là biến phụ thuộc; X 2 , X 3 là các biến độc lập, Yi , X 2i , X 3i là các quan sát thứ i
    của Y, X 2 , X 3 ; u là nhiễu ngẫu nhiên, u i là nhiễu tại quan sát thứ i; 1 là hệ số chặn
    (hệ số tự do), bằng giá trị trung bình của Y khi X 2  X 3  0 ; 2 , 3 là các hệ số hồi
    quy riêng hay còn gọi là hệ số của các biến độc lập, 2 chỉ sự thay đổi của Y khi X 3
    cố định và X 2 tăng hoặc giảm 1 đơn vị, còn 3 chỉ sự thay đổi của Y khi X 3 tăng
    hoặc giảm 1 đơn vị và X 2 cố định.
    Trong mô hình hồi quy hai biến (4.1) ta có các giả thiết sau:
     E(u i )  0, E(u i | X 2i , X 3i )  0.

     Các u i không tương quan, tức là

    Cov(u i , u j )  0, i  j.

     u i không tương quan với X 2i , X 3i , tức là

    Cov(X 2i ,u i )  0;Cov(X 3i , u i )  0.

     u i có phương sai không thay đổi, tức là: Var(u i )   2 , i.

    STA301_Bài 4_v1.0013101214 49

  4. Bài 4: Mô hình hồi quy bội

    4.2. Ước lượng tham số của mô hình hồi quy
    Tương tự trong bài 3, bài toán đặt ra là từ các dữ liệu quan sát chúng ta cần ước lượng
    các hệ số hồi quy 1 , 2 , 3 của mô hình (4.1). Phương pháp ta sẽ sử dụng sau đó chính
    là phương pháp bình phương tối thiểu OLS. Hàm hồi quy mẫu (SRF) được xây dựng
    từ n quan sát (Yi , X 2 , X3 ) có dạng:
    ˆ  ˆ  ˆ X  ˆ X
    Y (4.2)
    i 1 2 2i 3 3i

    Và Yi  ˆ 1  ˆ 2 X 2i  ˆ 3 X 3i  uˆ i  Y
    ˆ  uˆ
    i i

    trong đó ˆ 1 , ˆ 2 , ˆ 3 là ước lượng của 1 , 2 , 3 , uˆ i là ước lượng của u i , phần dư của
    quan sát thứ i.
    Từ (4.2) ta có:

     
    n n 2
     uˆ i2   Yi  ˆ 1  ˆ 2 X 2i  ˆ 3X3i
    i 1 i 1
    (4.3)

    n
    Ta cần xác định ˆ 1 , ˆ 2 , ˆ 3 sao cho  uˆ
    i 1
    2
    i trong (4.3) đạt giá trị nhỏ nhất.

    n
    Theo lý thuyết giải tích nhiều biến, ta thấy để  uˆ
    i 1
    2
    i đạt giá trị nhỏ nhất thì ˆ 1 , ˆ 2 , ˆ 3

    phải là nghiệm của hệ phương trình

    ˆ  ˆ X  ˆ X  Y
     1 2 2 3 3

    ˆ n n n n

    1  X 2i  ˆ 2  X 2i  ˆ 3  X 2i X 3i   Yi X 2i
    2
    (4.4)
     i 1 i 1 i 1 i 1
     n n n n

    ˆ 1  X 3i  ˆ 2  X 2i X 3i  ˆ 3  X 3i   Yi X 3i
    2

     i 1 i 1 i 1 i 1

    trong đó
    1 n 1 n
    X2   2i 3 n 
    n i 1
    X , X 
    i 1
    X 3i

    1 n
    Y  Yi .
    n i 1
    Hệ phương trình (4.4) được gọi là hệ phương trình chuẩn và phương pháp xác định
    ˆ 1 , ˆ 2 , ˆ 3 như trên được gọi là phương pháp bình phương tối thiểu (OLS).
    Nghiệm của phương trình (4.4) là:
    ˆ 1  Y  ˆ 2 X 2  ˆ 3 X 3
    n n n n

    y x x i 2i
    2
    3i   yi x 3i  x 2i x 3i
    ˆ 2  i 1 i 1 i 1 i 1
    2
    n
     n
     n


    i 1
    x  x    x 2i x 3i 
    i 1
    2
    2i
     i 1 
    2
    3i

    n n n n

     yi x 3i  x 3i2   yi x 3i  x 2i x 3i
    ˆ 3  i 1
    n
    i 1
    n
    i 1
    n
    i 1

    x x
    i 1
    2
    2i
    i 1
    2
    3i  ( x 2i x 3i ) 2
    i 1

    50 STA301_Bài 4_v1.0013101214

  5. Bài 4: Mô hình hồi quy bội

    2 r23

    Cov ˆ 2 ; ˆ 3    n 2  n 2 
    .
    1  r  2
    23   x 2i    x 3i 
     i 1   i 1 
    với yi  Yi  Y, x 2i  X 2i  X 2 , x 3i  X 3i  X 3 .
    Ta thấy rằng  2 là phương sai của u i và  2 là chưa biết. Vì vậy ta thay  2 bằng ước
    lượng không chênh lệch của nó là
    n

     uˆ 2
    i
    RSS
    ˆ 2  i 1
     .
    n 3 n 3

    CHÚ Ý
    2
     n 
     X X   X  X    x 2i x 3i 
    2

     n i 1 
    2 3 2 3
    r232 
    S S 2 2
     2 
    n
    2 
      x 2i   x 3i 
    X2 X3

     i 1  i 1 

    4.3. Phương sai và độ lệch chuẩn của các ước lượng bình phương tối thiểu
    Ta đã thu được các ước lượng cho các hệ số hồi quy bằng phương pháp OLS. Để tìm
    các ước lượng khoảng và tiến hành kiểm định các hệ số hồi quy, ta cần xác định
    phương sai và độ lệch chuẩn của các ước lượng thu được trên đây.
    Phương sai và độ lệch chuẩn của các ước lượng hệ số hồi quy theo phương pháp bình
    phương tối thiểu được cho bởi các công thức
    2
     
    Var ˆ 2  n  
    ; Se ˆ 2  Var ˆ 2 ;  
     x 1  r 
    i 1
    2
    2i
    2
    23

    2
     
    Var ˆ 3  n  
    ; Se ˆ 3  Var ˆ 3 ,  
     x 3i2 1  r232 
    i 1

    với r23 là hệ số tương quan giữa X 2 và X 3 .

    4.4. Mô hình hồi quy bội

    4.4.1. Khái niệm:
    Mô hình hồi quy bội là mô hình có hàm hồi quy tổng
    thể (PRF) gồm một biến phụ thuộc Y và k – 1 biến độc
    lập X 2 , X 3 ,…, X k có dạng như sau:
    Yi  1  2 X 2i  3 X 3i  …  k X ki  u i (4.5)
    trong đó 1 là hệ số chặn, hệ số tự do, nó cho ta biết
    trung bình của Y khi X 2 , X 3 ,…, X k bằng 0.

    STA301_Bài 4_v1.0013101214 51

  6. Bài 4: Mô hình hồi quy bội

     j ( j  1, 2,…, k) là các hệ số hồi quy riêng, nó cho ta biết sự thay đổi của Y khi X j
    thay đổi một đơn vị còn các X h  h  j bằng 0,
    u i là các nhiễu ngẫu nhiên.
    Phương trình (4.5) có thể được viết chi tiết dưới dạng hệ phương trình sau:
    Y1  1  2 X 21  3 X 31  …  k X k1  u1
    Y     X   X  …   X  u
     2 1 2 22 3 32 k k2 2
     (4.6)
    ………………………………………………………
    Yn  1  2 X 2n  3 X 3n  …  k X kn  u n

     Y1  1 X 21 X 31 … X k1 
       
     Y2  1 X 22 X 32 … X k 2 
    Đặt Y   . ; X   . . . … . 
       
     .  . . . … 
    Y   X kn 
     n 1 X 2n X 3n

     u1   1 
       
     u2   2 
    u   . ;    . 
       
     .   . 
    u   
     n  n
    khi đó hệ phương trình (4.6) có thể viết dưới dạng phương trình ma trận
    Y  X  u (4.7)

    4.4.2. Các giả thiết cơ bản
    Ta đưa ra các giả thiết cơ bản cho mô hình hồi quy nội
    bội như sau:
    Giả thiết 1:
    Ma trận ngẫu nhiên u có kỳ vọng bằng 0, tức là:
     E  u1    0 
       
     E u2    0 
    E u   .    . 
       
     .  .
     E u   0
     n   
    Giả thiết 2:
    Các thành phần trong ma trận u là không tương quan, tức là: E  u i u j   0 i j

    E  u i u i   2

    hoặc ta có thể viết dưới dạng: E  uu T   2 I , với I là ma trận đơn vị cấp n.

    52 STA301_Bài 4_v1.0013101214

  7. Bài 4: Mô hình hồi quy bội

    Giả thiết 3: Các u i có phân bố chuẩn N  0, 2  i  1, n .

    Giả thiết 4: Các X 2 , X 3 ,…, X k không có quan hệ tuyến tính.

    4.4.3. Ước lượng các tham số bằng OLS
    Với giả thiết trên, ta cần dựa vào dữ liệu
     Yi , X 2i , X3i ,…, X ki  ,  i  1, n  quan sát được để tìm ước

    lượng véc tơ hệ số    1 , 2 ,…, k  của mô hình hồi quy
    T

    bội (4.7).

     
    T
    Ký hiệu ˆ  ˆ 1 , ˆ 2 ,…, ˆ k là ước lượng của  , khi đó ta có
    phương trình hồi quy mẫu (SRF)


    Yi  ˆ 1  ˆ 2 X 2i  ˆ 3 X 3i  …  ˆ k X ki  uˆ i i  1, n . 
     
    n
    Ta cần tìm các hệ số ˆ 1 , ˆ 2 ,…, ˆ k sao cho tổng các phần dư  uˆ
    i 1
    2
    i đạt giá trị

    nhỏ nhất.
    Kết quả của phương pháp giải tích cho thấy véc tơ ước lượng trên đây thỏa mãn
    phương trình ma trận

     XX  ˆ  XY (4.8)

    trong đó X, Y tương ứng là các ma trận chuyển vị của X và Y . Từ giả thiết 4 dẫn
    đến sự tồn tại ma trận nghịch đảo của XX và do đó

    ˆ   XX  XY.
    1

    Biểu thức này được gọi là phương trình cơ bản của phương pháp OLS.

    4.5. Các tính chất của ước lượng bình phương nhỏ nhất
    Xét mô hình hồi quy bội
    Yi  1  2 X 2i  3 X 3i  …  k X ki  u i .
    Giống như mô hình hồi quy đơn, mô hình hồi quy bội này có
    các tính chất sau:
     Đường hồi quy bội đi qua điểm  Y, X 2 , X 3 ,…, X k  .

     ˆ Y.
    Y
    n
     u
    i 1
    i  0.

    n
     u i không tương quan với X pi ,  p  2,3,…, k  , u X
    i 1
    i pi 0.

    STA301_Bài 4_v1.0013101214 53

  8. Bài 4: Mô hình hồi quy bội
    n
    ˆ :
     Các u i không tương quan với Yi  u Yˆ  0 .
    i 1
    i i

     ˆ i là các ước lượng tuyến tính không chệch và có phương sai nhỏ nhất cho các


    i i  1, k . 
    4.6. Hệ số xác định bội R 2 và hệ số xác định hiệu chỉnh
    Trong mô hình hồi quy tuyến tính đơn ta đã đưa ra hệ
    số xác định

    ESS RSS
    r2   1 .
    TSS TSS

    Từ công thức trên ta thấy khi r 2 càng lớn thì tổng bình
    phương sai số dự báo càng nhỏ, do đó mô hình hồi quy
    càng phù hợp. Vì vậy hệ số r 2 còn được dùng để đo độ
    phù hợp của mô hình. Tương tự cho mô hình hồi quy bội ta cũng xây dựng hệ số xác
    ESS RSS
    định ký hiệu là R 2 được xác định bởi công thức: R 2   1 .
    TSS TSS
    Dễ dàng chứng minh được rằng

    ˆ XY  nY 2
    R2  . (4.9)
    YY  nY 2

    Từ các công thức trên có thể thấy hệ số xác định R 2 có tính chất sau:
     0  R 2  1.
     Nếu R 2  1 khi đó đường hồi quy giải thích 100% sự thay đổi của Y bởi vì khi đó:
    n

     uˆ
    i 1
    2
    i 0.

     Nếu R 2  0 khi đó mô hình không giải thích được sự thay đổi của Y.
     Nếu số biến độc lập càng tăng thì hệ số R 2 càng lớn, hay nói cách khác R 2 là một
    hàm tăng theo các biến giải thích.
    Như vậy, tính phù hợp của mô hình hồi quy tăng lên
    khi có nhiều biến giải thích trong mô hình hơn. Tuy
    nhiên, người ta luôn muốn dùng một số lượng biến
    giải thích vừa đủ sao cho vẫn có được mô hình phù
    hợp mà không quá tốn kém khi phải thu thập thông
    tin của quá nhiều biến giải thích. Hơn nữa, nhiều
    khi đưa thêm một số biến độc lập vào mô hình thì
    tác động riêng phần của các biến độc lập đó tới biến phụ thuộc lại không thực sự có ý
    nghĩa thống kê. Vậy cần có tiêu chuẩn đánh giá sự phù hợp của mô hình, trong đó có
    cân nhắc đến số lượng biến giải thích của mô hình. Một trong số các tiêu chuẩn như vậy
    là hệ số xác định hiệu chỉnh R 2 của R 2 , cho bằng biểu thức

    54 STA301_Bài 4_v1.0013101214

  9. Bài 4: Mô hình hồi quy bội
    n

     uˆ 2
    i /(n  k)
    R  1
    2 i 1
    n
    .
    y
    i 1
    2
    i /(n  1)

    trong đó n là số quan sát, k – 1 là số biến độc lập trong mô hình.
    Dễ dàng thấy có mối quan hệ giữa R 2 và R 2 , cụ thể là:
    (n  1)
    R 2  1  (1  R 2 ) .
    (n  k)
    Từ đó R 2 có các tính chất sau:
     Nếu k > 1 thì R 2  R 2  1 ;
     Khi số biến độc lập k –1 tăng lên thì R 2 cũng tăng lên nhưng tăng chậm hơn so với R 2 ;
     R 2  0 , nhưng R 2 có thể âm. Khi R 2 nhận giá trị âm thì để cho tiện, thường thì
    người ta gán lại cho nó giá trị bằng 0.
    Trong thực hành, khi muốn đánh giá sự phù hợp của mô hình thì R 2 hay được dùng
    hơn so với R 2 , vì nếu dùng R 2 ta dễ đưa ra một hình ảnh lạc quan quá mức về sự phù
    hợp của mô hình, nhất là đối với các bài toán mà số lượng biến giải thích không nhỏ
    hơn nhiều lắm so với số lượng quan sát. Tuy nhiên, quan điểm này còn được điều
    chỉnh tùy theo bài toán cụ thể. Hơn nữa, ngoài hai thống kê R 2 và R 2 , người ta còn
    dùng một số tiêu chuẩn khác để đánh giá tính phù hợp của mô hình, chẳng hạn như:
    quy tắc thông tin Akaike hay quy tắc dự báo Amemiya.

    4.7. Quan hệ giữa hệ số xác định và tiêu chuẩn kiểm định F
    Xét mô hình hồi quy bội (4.5):
    Yi  1  2 X 2i  3 X 3i  …  k X ki  u i , i  1, n
    Mô hình được gọi là không có hiệu lực giải thích, hay nói cách khác không giải thích
    được sự thay đổi của biến Y, nếu toàn bộ các hệ số hồi quy riêng đều bằng 0. Vì vậy để
    kiểm định sức mạnh hay mức ý nghĩa của mô hình ta cần kiểm định bài toán sau:
    H 0 : 2  3  …  k  0
     (4.10)
    H1 : i  0
    Để giải quyết bài toán kiểm định trên, ta dùng tiêu chuẩn thống kê sau:
    (ˆ XY  nY 2 ) / k
    F ~ F(k  1, n  k)
    (YY  ˆ XY) /(n  k  1)
    Khi giả thiết thống kê F có phân phối Fisher với k – 1 và n – k bậc tự do. Vậy với
    mức ý nghĩa  ta có quy tắc kiểm định:
     Nếu Fqs  F  k  1, n  k  thì bác bỏ H 0 .
     Nếu Fqs  F  k  1, n  k  thì chưa bác bỏ H 0 .
    Quan hệ giữa hệ số xác định R 2 và thống kê F được diễn giải như sau: Từ (4.5) và
    (4.9), ta thấy bài toán kiểm định (4.10) tương đương với bài toán kiểm định
    H 0 : R  0
    2

     (4.11)
    H1 : R  0
    2

    STA301_Bài 4_v1.0013101214 55

  10. Bài 4: Mô hình hồi quy bội

    ˆ XY  nY 2
    Mặt khác: R 2  .
    YY  nY 2

    R 2 /  k  1
    Do đó ta có: F  .
    (1  R 2 ) /(n  k)

    Vậy thống kê F cũng là tiêu chuẩn thống kê cho bài toán kiểm định (4.11).
    Ví dụ 1
    Một công ty muốn mở rộng thị trường kinh doanh tại
    một thành phố. Trước khi quyết định mở chi nhánh tại
    thành phố đó, công ty đã tiến hành nghiên cứu thị
    trường bằng cách tiến hành quảng cáo và chào bán sản
    phẩm của mình từ đó xem xét khả năng tiêu thụ sản
    phẩm. Thu thập số liệu trong 10 tuần về số sản phẩm
    bán được trong một tuần, giá sản phẩm X 2 và chi phí
    cho quảng cáo X 3 ta có bảng số liệu sau:
    Giá sản phẩm Cho phí quảng cáo Số sản phẩm bán ra/tuần
    4.92 4.79 425
    5.5 3.61 467
    5.54 5.49 296
    5.11 2.78 626
    5.62 5.74 165
    5.24 1.34 515
    4.15 5.81 270
    4.02 3.39 689
    5.77 3.74 413
    4.57 3.59 561

    Phân tích số liệu bằng Evievs ta thu được báo cáo:

    56 STA301_Bài 4_v1.0013101214

  11. Bài 4: Mô hình hồi quy bội

    Dựa vào kết quả báo cáo trong Evievs ta xây dựng được mô hình hồi quy tuyến tính 3
    biến chỉ sự phụ thuộc của sản phẩm bán được Y với chi phí quảng cáo X 3 và giá thành sản
    phẩm X 2 qua biểu thức

    ˆ  ˆ  ˆ X  ˆ X
    Y 1 2 2 3 3

    với ˆ 1  1360.84 , ˆ 2  110.2952 , ˆ 3  89.82406 . Ngoài ra còn có hệ số xác định
    bội R 2  0.772974 , hệ số xác định hiệu chỉnh (Adjusted R-Squared) R 2  0.708110 ,
    giá trị tiêu chuẩn thống kê F (F-Static) Fqs2  11.91675 . Vậy mô hình hồi quy cụ thể là:

    ˆ  1360.84  110.2952X  89.82406X .
    Y 2 3

    Đối với mô hình này, ta cần đặt ra câu hỏi: Với mức ý nghĩa   0.05 thì giá bán và
    chi phí quảng cáo có ảnh hưởng đến số lượng sản phẩm bán ra hay không?
    Để trả lời cho câu hỏi này, ta cần kiểm định bài toán:

     H 0 :  2  3  0

     H1 : 2 , 3  0

    hoặc kiểm định bài toán tương đương là:

    H 0 : R 2  0

    H1 : R  0
    2

    Cả hai bài toán trên đều có thể giải quyết bằng cách sử dụng thống kê F . Ta có
    Fqs  11.91675 . Với n = 10, k = 2, tra bảng phân phối Fisher hoặc dùng lệnh Excel ta
    tìm được phân vị F0.05  2;7   4.77 . Rõ ràng Fqs  F0.05  2;7  , vậy ta bác bỏ H 0 , kết
    luận giá bán của sản phẩm và chi phí cho quảng cáo có ảnh hưởng đến số lượng sản
    phẩm bán ra.
    Hai bài toán kiểm định trên còn có thể giải quyết bằng cách so sánh xác suất ý nghĩa
    tương ứng với mức ý nghĩa đã định. Kết quả của Eviews cho thấy xác suất ý nghĩa của
    thống kê F (Prob(F-statistic)) có giá trị bằng 0.005575, nhỏ hơn 0.05, vậy có thể bác
    bỏ giả thuyết H 0 .

    4.8. Ước lượng khoảng cho hệ số hồi quy
    Giả sử trong mô hình hồi quy (4.7), véc tơ nhiễu ngẫu nhiên u có phân phối chuẩn

    N(0; 2 ) . Khi đó ta có véc tơ hệ số hồi quy ˆ có phân phối chuẩn N , 2  XX  ,
    1

    các thành phần của véc tơ đó cũng có phân phối chuẩn ˆ i ~ N  ;  2  , (i  1, k) , với
     2 chưa biết và nó có ước lượng không chệch là:
    n
    ˆ 2   u i2  n  k .
    i 1

    STA301_Bài 4_v1.0013101214 57

  12. Bài 4: Mô hình hồi quy bội

    ˆ i  i
    Các thống kê t  đều có phân phối student với (n – k) bậc tự do. Do vậy, với
     
    Se ˆ i

    độ tin cậy 1  ta có khoảng ước lượng cho i là:

    ˆ i  se(ˆ i )t n / 2k  i  ˆ i  se(ˆ i )t n / 2k ; i  1, k (4.12)
    trong đó t n / 2k là phân vị của phân phối Student với (n – k) bậc tự do ứng với mức ý
    nghĩa  / 2 , giá trị này có thể thu được bằng cách tra bảng hoặc dùng lệnh thích hợp
    trong Excel.
    Ví dụ 2: Từ dữ liệu trong ví dụ 1 hãy tìm ước lượng khoảng của hệ số hồi quy riêng
    với độ tin cậy 95%.
    Trong bảng kết quả của Eviews ta đã có:
    ˆ  1360.84 ,
    1 ˆ  110.2952 , 2

    ˆ 3  89.82406
    Trong cột Std.Error ta có:

       
    Se ˆ 1  258.4298 , Se ˆ 2  47.91851 , Se ˆ 3  20.69356 .  
    Ta thấy n  10 , k  3 , 1    0.95    0.05 . Từ đó tra bảng hoặc sử dụng Excel
    (dùng lệnh Tinv(0.05,7)), ta sẽ có t 0.025
    7
     2.365 . Thay các thông số tương ứng vào
    (4.12), ta thu được các ước lượng khoảng của 2 và 3 lần lượt là:
    110.2952  47.91851 2.365  2  110.2952  47.91851 2.365
     223.622  2  3.032 .
    89.82406  20.69365  2.365  3  89.82406  20.69365  2.365
     138.765  3  40.8836 .

    4.9. Kiểm định giả thuyết cho các hệ số hồi quy
    Để so sánh các hệ số hồi quy với các giá trị giả định cho trước, ta có các giả thuyết
    H 0 : i  *i (i  1, k)
    đi kèm với một trong số các đối thuyết tương ứng H1 : i  *i hoặc H1 : i  *i hoặc
    H1 : i  *i .

    ˆ i  *i
    Với giả thuyết về sai số ngẫu nhiên u như trong phần 4.4 ta thấy thống kê t i 
    Se ˆ  i

    có phân phối Student với n – k bậc tự do. Dựa vào kết quả đó ta có thể giải quyết một
    loạt bài toán kiểm định so sánh ước lượng của các hệ số trong mô hình hồi quy tuyến
    tính bội như sau:
    H 0 : i  i
    *

    Bài toán 1: 
    H1 : i  i
    *

    Miền bác bỏ: W  (;  t (n/2k ) )  (t (n k )
     / 2 ; ).

    58 STA301_Bài 4_v1.0013101214

  13. Bài 4: Mô hình hồi quy bội

    H 0 : i  i
    *

    Bài toán 2: 
    H1 : i  i
    *

    k )
    Miền bác bỏ: W  (t (n
     ; ).

    H 0 : i  *i
    Bài toán 3: 
    H1 : i  i
    *

    Miền bác bỏ: W  (;  t (n  k ) )

    Sử dụng phần mềm Eviews chúng ta có thể tính được ngay giá trị tiêu chuẩn của
    thống kê t i và xác suất ý nghĩa p tương ứng, từ đó có thể giải quyết bài toán theo hai
    cách sau:
     Cách 1:
    k )
    Tìm phân vị t (n
    /2 và miền bác bỏ W rồi so sánh tiêu chuẩn thống kê t i với W để
    đưa ra kết luận.
     Cách 2:
    So sánh xác suất ý nghĩa p với mức ý nghĩa  đã định trước như sau:
    o Đối với Bài toán 1, nếu p   thì bác bỏ giả thuyết H 0 , còn nếu p   thì
    chấp nhận H 0 .
    o Đối với các Bài toán 2 và 3, nếu p / 2   thì bác bỏ giả thuyết H 0 , còn nếu
    p / 2   thì chấp nhận H 0 .
    Ví dụ 3: Xét số liệu trong ví dụ 1, với mức ý nghĩa   0.05 có thể cho rằng khi giá
    sản phẩm tăng thì doanh số bán hàng sẽ giảm không?
    Ta có phương trình hồi quy:
    Y  0  2 X 2  3 X 3  u .

    Nếu 2 âm thì Y phụ thuộc nghịch biến với X 2 , tức là X 2 tăng thì Y giảm. Vậy để
    trả lời cho câu hỏi trên ta cần lập bài toán kiểm định giả thuyết
    H 0 : 2  0

    H1 : 2  0
    Với kết quả của Eviews đưa ra ở phần trên, ta có:
    ˆ 2 110.2952
    t2    2.30172 .
    se(ˆ 2 ) 47.91851
    k )
     t 0.05  1.895 .
    7
    Mặt khác, với n  10, k  3,   0.05 , ta có t (n

    Vậy miền bác bỏ của bài toán này là
    W  (; 1.895) .
    Rõ ràng ta có t 2  W , do đó ta có thể bác bỏ giả thuyết H 0 , chấp nhận H1 và đưa ra
    kết luận 2  0 .

    STA301_Bài 4_v1.0013101214 59

  14. Bài 4: Mô hình hồi quy bội

    Nếu giải quyết theo Cách 2 thì ta có xác suất ý nghĩa p bằng 0.0549, vậy
    p / 2  0.0549 / 2    0.05 .
    Do đó có thể bác bỏ giả thuyết H 0 .

    4.10. Dự báo cho mô hình hồi quy tuyến tính bội
    Một trong những ứng dụng quan trọng của hồi quy là
    dự báo, bài toán đặt ra là dựa vào mô hình hồi quy hãy
    dự báo giá trị của Y khi biết giá trị của X là X  . Xét
    mô hình hồi quy
    ˆ  ˆ  ˆ X  …  ˆ X  Xˆ .
    Y 1 2 2 k k

    với X  (1, X 2 , X 3 ,…, X k ) ; ˆ  (ˆ 1 , ˆ 2 , ˆ 3 ,…, ˆ k ) ‘ .
    Cho trước giá trị của các biến độc
    lập X  X  (1, X2 , X3 ,…, Xk ) , khi đó giá trị dự báo
    ˆ :
    của Y là Y
    Yˆ   E(Y | X , X ,…, X )  ˆ  ˆ X  ˆ X  …  ˆ X .
    2 3 k 1 2 2 3 3 k k

    Ví dụ 4: Xét số liệu trong ví dụ 1, hãy dự báo doanh số bán hàng trung bình khi giá
    sản phẩm là 4.5 và chi phí quảng cáo là 3.2.
    Ta có:
    Yˆ  1360.84  110.2952X  89.824606X .
    2 3

    Vậy với X2  4.5 và X3  3.2 , ta có:
    ˆ   E  Y | X  4.5, X  3.2   1360.84  110.2952  4.5  89.824606  3.2  577.07 .
    Y 2 3

    60 STA301_Bài 4_v1.0013101214

  15. Bài 4: Mô hình hồi quy bội

    TÓM LƯỢC CUỐI BÀI
     Mô hình hồi quy bội gồm 2 biến độc lập:
    Giả sử nghiên cứu sự phụ thuộc của Y vào 2 biến X2 và X3. Mô hình có dạng:
    E  Y / X 2i , X 3i   1  2 X 2i  3 X 3i

    hoặc Yi  1  2 X 2i  3 X 3i  u i

    1 là hệ số chặn (hệ số tự do): giá trị trung bình của Y khi X2 = X3 = 0,
    2 và 3 là các hệ số hồi quy riêng, chỉ sự thay đổi của trung bình của Y khi riêng X2 và X3
    tăng hoặc giảm 1 đơn vị và biến còn lại cố định.
     Mô hình hồi quy bội gồm k biến (k–1 biến độc lập): Yi  1  2 X 2i  3 X 3i  …  k X ki  u i .
    Mô hình này có 1 biến phụ thuộc và k–1 biến độc lập (k biến)
    Các hệ số hồi quy riêng βj thể hiện ảnh hưởng của riêng từng biến độc lập Xj lên trung bình
    của Y khi các biến khác được giữ không đổi.
     Phương pháp OLS cho mô hình hồi quy bội.
    Trong mô hình k biến chú ý công thức sau:
    n

     uˆ 2
    i
    RSS
    ˆ 2  i 1
     .
    nk nk
     Hệ số xác định bội R2 và hệ số xác định bội đã hiệu chỉnh.
    Để đo độ phù hợp của hàm hồi quy, dùng R2. Giá trị của R2 cho biết bao nhiêu % sự biến
    thiên của biến phụ thuộc được giải thích bởi đồng thời các biến độc lập hoặc được giải thích
    bởi hàm hồi quy mẫu
    ERR RSS
    R2   1 .
    TSS nk
    Vì khi đưa thêm biến độc lập vào mô hình, R2 luôn luôn tăng lên nên người ta sử dụng hệ số
    xác định bội đã điều chỉnh để xem xét việc có nên đưa thêm biến mới vào mô hình hay không:
    n 1
    R 2  1  1  R 2 
    nk
    R2  R2 0  R2  1
    Hệ số R 2 có thể âm.
     Khoảng tin cậy với độ tin cậy 1  cho hệ số βi là:

       
    ˆ i  Se ˆ t    i  ˆ i  Se ˆ t   i  1, k .
    n k

    2
    n k

    2

    Khoảng tin cậy này cho biết khi Xi tăng hoặc giảm 1 đơn vị thì trung bình của biến phụ thuộc
    sẽ thay đổi trong khoảng nào.
     Kiểm định về sự phù hợp của mô hình hồi quy
    ˆ  
    Tiêu chuẩn kiểm định: t i  i i
    Se ˆ i  
    STA301_Bài 4_v1.0013101214 61

  16. Bài 4: Mô hình hồi quy bội

    H 0 : i  i
    *

    Bài toán 1: 
    H1 : i  i
    *

       
    Miền bác bỏ: W= ;  t n  k   t n  k  ;  .
    2 2

    H 0 : i  *i
    Bài toán 2: 
    H1 : i  i
    *

     
    Miền bác bỏ: W= t n  k  ;  .

    H 0 : i  *i
    Bài toán 3: 
    H1 : i  i
    *


    Miền bác bỏ: W= ;  t n  k  . 

    62 STA301_Bài 4_v1.0013101214

  17. Bài 4: Mô hình hồi quy bội

    CÂU HỎI THƯỜNG GẶP

    1. Trong mô hình hồi quy bội, các giả thiết của phương pháp OLS có khác gì so với mô hình
    hồi quy đơn?

    2. Vai trò của các hệ số hồi quy trong mô hình hồi quy bội khác thế nào so với mô hình hồi quy đơn?

    3. Hệ số xác định bội trong mô hình hồi quy bội cho biết điều gì?

    4. Tại sao lại cần đưa ra khái niệm hệ số xác định bội đã điều chỉnh trong hàm hồi quy bội?

    5. Khi nào thi nên đưa thêm biến độc lập mới vào mô hình nếu sử dụng hệ số xác định bội đã
    điều chỉnh?

    6. Khi nào thi ta cần xây dựng khoảng tin cậy cho các hệ số hồi quy?

    7. Khi nào thì dùng khoảng tin cậy đối xứng, bên phải hoặc bên trái?

    8. Kiểm định giả thiết về một hệ số hồi quy bằng 0 có ý nghĩa gì, kiểm định hệ số hồi quy bằng
    một giá trị cụ thể có ý nghĩa gì?

    9. Kiểm định F về sự phù hợp của mô hình hồi quy có ý nghĩa gì?

    CÂU HỎI TRẮC NGHIỆM
    ˆ = 10 – 3X1 + 2.5X2. Điều khẳng định nào sau đây đúng?
    1. Cho mô hình hồi quy Y
    A. X2 quan trọng hơn X1 vì dấu của hệ số là dương.
    B. Khi X1 giảm 3 đơn vị, Y giảm 1 đơn vị.
    C. Khi X2 giảm 2.5 đơn vị, Y giảm 1 đơn vị.
    D. Khi X1 giảm 1 đơn vị, Y tăng 3 đơn vị.

    2. Hệ số xác định bội đã điều chỉnh liên quan tới điều chỉnh R2 qua:
    A. Tổng số tham số trong mô hình hồi quy.
    B. Số biến phụ thuộc trong mô hình và kích thước mẫu.
    C. Số biến độc lập trong mô hình và kích thước mẫu.
    D. Hệ số tương quan và mức ý nghĩa.

    3. Để kiểm định sự phù hợp của hàm hồi quy một mô hình gồm 5 biến độc lập và có 30 quan
    sát, bậc tự do trong giá trị phân vị F là:
    A. 5 và 30 B. 6 và 29
    C. 5 và 24 D. 6 và 25
    ˆ  8  3X  5X  4X . Khi X3 tăng 1 đơn vị, với X1 và X2 giữ
    4. Mô hình hồi quy có dạng Y 1 2 3

    không đổi, Y sẽ:
    A. Tăng 1 đơn vị. B. Tăng 12 đơn vị.
    C. Giảm 4 đơn vị. D. Giảm 16 đơn vị.

    STA301_Bài 4_v1.0013101214 63

  18. Bài 4: Mô hình hồi quy bội

    5. Từ mô hình hồi quy với 3 biến độc lập và có 25 quan sát, tính được R2 = 0.769. Giá trị của
    hệ số xác định bội đã hiệu chỉnh là:
    A. 0.385 B. 0.877
    C. 0.591 D. 0.736
    6. Một mô hình hồi quy bội thì có:
    A. Chỉ duy nhất 1 biến độc lập. B. Chỉ duy nhất 2 biến độc lập.
    C. Nhiều hơn 1 biến độc lập. D. Nhiều hơn 1 biến phụ thuộc.
    7. Cho mô hình hồi quy: Y ˆ  2  3X  4X  5X , 1 đơn vị tăng của X1, X2 và X3 giữ không
    1 2 3

    đổi, sẽ dẫn đến:
    A. Tăng 3 đơn vị của Y. B. Giảm 3 đơn vị của Y.
    C. Đơn vị 8 đơn vị của Y. D. Không có lựa chọn nào ở trên.
    8. Để kiểm định sự phù hợp của mô hình hồi quy có 4 biến độc lập, giả thuyết H0 là:
    A. H 0 : 2  3  4  5  1. B. H 0 : 1  2  3  4  5 .
    C. H 0 : 2  3  4  5  0. D. H 0 : 1  2  3  4  5  0.
    9. Trong mô hình hồi quy bội, giá trị của hệ số R2 nằm trong khoảng:
    A. 1 và +1. B. 0 và +1.
    C. 1 và 0. D. không có lựa chọn nào ở trên.
    10. Để kiểm định về sự phù hợp của mô hình hồi quy bội, ta kiểm định sự bằng không của tất cả
    các hệ số hồi quy bằng kiểm định:
    A. Kiểm định t. B. Kiểm định z.
    C. Kiểm định F. D. Không có lựa chọn nào ở trên.

    64 STA301_Bài 4_v1.0013101214

Download tài liệu Bài giảng Kinh tế lượng – Bài 4: Mô hình hồi quy bội File Docx, PDF về máy